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Abstract. This paper presents the problem of designing a feedback control of the aggregated 

model describing helicopter flight dynamics under the influence of exogenous factors based on 

the H-infinity approach. The original nonlinear equations of dynamics are assumed to be 

linearized regarding to several flight modes that characterize with a set of precisely specified 

flight conditions such as an attitude of an aircraft, its forward speed and turn rate. Matrices of 

the linearized systems are dependent on the speed of the aircraft. Due to that the aggregated 

model comprises eight submodels corresponding to flight modes when the speed varies from 

hover to 140 kts in a certain regular interval. The proposed principle of designing includes two 

stages: on the first stage the feedback control input is selected for each submodel separately so 

that the H-infinity norm of the value functional with respect to the H-infinity norm of 

disturbances is minimum; on the second one the interpolation technique lying in the expansion 

of matrices in the basis of finite functions is applied. The solution method is experienced on 

three helicopter models: ZD559-Lynx, the twin engine, utility helicopter in the 4.5 -ton 

category; S123-Bo105, the twin engine helicopter in the 2.5 ton class; SA330-Puma, the twin 

engine, medium-support helicopter in the 6-ton category. 

1. Introduction  

The complexity of helicopter flight dynamics makes the problem of a regulator design to stabilize a 

helicopter system under the effect of disturbances tough to solve [1,8]. Due to importance of tasks 

performed by helicopters this problem gains a considerable attention from many researches. To 

provide the good robustness and handling quality of a system especially if uncertainties of different 

types are needed to take into account the H-infinity strategy is useful [2,4-6]. The H-infinity design 

problem can be stated as the problem of searching a maximum value of an uncertainty such that the 

desired regulator provides the stability of a closed-loop system with bounded disturbances in 

accordance with the H-infinity norm. There exist several implementation of the H-infinity approach 

among which algorithms where more than one associated Ricatti equations are required to solve or the 

equivalent LMI strategy can be distinguished [6-7]. In the paper, this approach is implemented as the 

recursive procedure of solving one Riccati equation without a preliminary initialization of the system 

gain that produces the desired regulator [2]. 

 

2. System model 

Consider the dynamical model of helicopter motion containing the state equation that describes the 

evolution of a state vector ( )x t  for a given control input ( )u t  provided that the motion is undergone 
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by exogenous disturbances ( )d t  of a known intensity like strong wind, wind gusts, low level wind 

shear and the output equation for an output vector ( )y t : 

    
( ) ( ) ( ) ( ), 1,...,

( ) ( )

i i i

i

x t A x t B u t D d t i m

y t C x t

   


   (1) 

where          , , , , , ,n k s n n n k n s q

i i i i i ix t R u t R d t R A A V R B V R D R C R           . The 

subscript i  indicates a mode of the motion. In the paper one considers 8 modes  8m   which 

correspond to the flight on sea level with zero sideslip and turn rate provided that the helicopter 

forward speed iV  varies from hover to 140 kts :    1 , 20 kts, 1,..,8i i iV i V V i      .  

The equations in the system (1) are linearized equations of helicopter flight dynamics in a 

neighborhood of the aforementioned trim modes [1]. With this regard letting the state vector 

 , , ,θ, , , φ, 
T

x u w q v p r  and the control input  1s 1c 00 Tθ ,θ ,θ ,θ
T

u   the matrices iA  and iB are 

represented as 

   
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2 2
0 0
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A

Y R Y P Y g Y Y W g

    
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  

  

    

      

1 2 1 2

1 3 1
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0 0
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0 0
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, 

where ,  , u v w  are components of the transitional velocity; ,  , p q r  are components of the rotational 

velocity;φ, θ
 are Euler angles (roll, pitch angles) defining a position of the aircraft with respect to 

earth; 0θ  and 0Tθ  are the main and tail rotor collective pitch angles; 1sθ  and 1cθ  are  longitudinal and 

lateral cyclic pitch; ,  , X Y Z and   , ,L R N are components of applied external forces and moments 

respectively, g  is a gravitational acceleration, , , xx yy zzI I I  are moments of inertia about the 

corresponding axes; xzI  is a product of inertia about the x  and z  axes; , ,..v qL M are moment 

derivatives; , ,...u pX X  are X - force derivatives; , ,...v rY Y  are Y - force derivatives; , ,...w qZ Z  are Z - 

force derivatives; ,e e   are trim Euler angles; a  is the aircraft angular velocity in trim flight; 

, ,e e eP Q R  are trim angular velocities in fuselage axes system; , ,e e eU V W  are trim velocities in fuselage 

axes system; 1 2 3, ,k k k  are inertia coupling parameters; 
0 1 1 0 1 1 0 1 1
, , , , , , , ,

s c s c s c
X X X Z Z Z M M M          are 

control derivatives regarding to main rotor longitudinal; 
0 1 1 0 1 1 0 1 1
, , , , , , , ,

s c s c s c
Y Y Y L L L N N N     
          are 
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control derivatives regarding to main rotor literal; 
0 0 0 0 0 0

, , , , ,
T T T T T T

X Z M Y L N 
     

 are control 

derivatives regarding to tail rotor. The yaw angle is omitted because of the considered flight 

conditions.  

Form the value functional (quality criterion) for each subsystem given above: 

    
2

( ) ( ) ( ) ( ) ( ),T T

i iz t x t S x t u t G u t      (2) 

where n

i

nS R   is a nonnegative definite matrix, k

i

kG R   is a positive definite matrix. 

Define 2L  gain of a subsystem as 

    

2

0 0

2

0 0

( ) [ ( ) ( ) ( ) ( )]

( ) ( ) ( )

T T

i i

T

z t dt x t S x t u t G u t dt

d t dt d t d t dt

 

 




 

 

   (3) 

The purpose of the paper is to find the output feedback control ( )u t  for the aggregated model (1) 

presented as the combination of subsystems for flight conditions with different values of the forward 

speed. The desired ( )u t  should be designed so that the system is stable and 2L  gain is attenuated by 

some prescribed value 
2 . 

 

3. Solution algorithm 

The wished ( )u t  is formed basing on the aggregation principle with use of output feedback control 

( )iu t  for subsystems. It is proposed that ( )iu t  should be searched in the form  

   * ( )i i i iu t K C x t F x t   , 

where the gain *

iK  such that the i th subsystem is stable and 2L  gain is bounded by 
2 .  

Then according to the result in [2] for the disturbance 
2

1
*( ) ( )T

i id t D P x t


 there exists *

iK  such 

that 
* 1( ),T

i i i i i iK C G B P L   
* ,T

i i i i i iL G K C B P   

1 1

2

1
0T T T

i i i i i i i i i i i i i i i i iA P P A PD D P P B G B P S L G L      


. 

If it is required to solve the problem for a flight mode when the forward speed takes values 

differing from the mentioned above the interpolation concept based on using the basis of finite 

functions are applied. The utilized finite functions are [3,9] 

 

 

 
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1

1
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1
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  
    

  
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 

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
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

 

where 2,3,4p   is an interpolation parameter. The finite functions take zero values outside the interval 

 1,1 . 

Then the original aggregated system can be expressed in the form  
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     ,x t A BF x t   

if the expansion of the system matrices in the basis of  *

pS   are used:  * 1i p

i i

V
A A S i

V

 
   

 
 , 

 * 1i p

i i

V
B B S i

V

 
   

 
 ,  * 1i p

i i

V
F F S i

V

 
   

 
 . Thus the output feedback    u t F x t  . 

The detailed algorithm [2] is given below. It should be noted that this algorithms doesn’t contain 

the step of setting initial gain 0

iK . 

Algorithm 

 

1. Set 00, 0, 1,.., .ik L i m    Define small number  . 

2. Solve the Riccati equation  

1 1

2

1
0T k k k T k k T k k k

i i i i i i i i i i i i i i i i iA P P A P D D P P B G B P S L G L      


 

and find k

iP . 

3. Find 1 1, , 1,..,k k

i iK L i m   : 
1 1 1( ) ( ) ,k T k k T T

i i i i i i i iK Q B P L C CC    1 1 ,k k T k

i i i i i iL G K C B P    

4. Stop and set * 1k

i iK K   if 
1k k

i iK K    . Otherwise set 1k k   and go to step 2. 

5. Find 1 , 1,..,T

i i i i iF G B P L i m   . 

6. Find interpolated matrices , ,A B F  applying the expansion in the basis of the finite functions 

for a given mode. 

7. Solve the equations of aircraft dynamics  

     x t A BF x t   

used any of numerical methods of appropriate order, for example the Runge-Kutta methods. 

 

4. Analysis of helicopters’ motion 

The proposed technique is demonstrated on the example of modeling dynamics for three helicopter 

models: ZD559-Lynx, the twin engine, utility helicopter in the 4.5 -ton category; S123-Bo105, the 

twin engine helicopter in the 2.5 ton class; SA330-Puma, the twin engine, medium-support helicopter 

in the 6-ton category. Fig.1 visualizes poles location for three considered helicopters models before the 

H-infinity design is performed. It is clearly seen the aforementioned systems are originally unstable 

because some of poles are positioned on the right half plane and as consequence the synthesis of a 

regulator is required.  

Figure 2 demonstrates the evolution of trajectories produced by the obtained control for three 

systems. The presented behavior of components of the vector state points out on damping transition 

processes and stabilizing systems. It should be noted that for the computation of the output feedback 

gain *

iK  the initialization is not needed. The parameter   should be chosen in conformity with values 

of entries of system matrices. The 
2 -value is selected experimentally. The results are obtained 

provided that 
20.2 0.4   in dependence on a model of helicopter. It should be underlined that the 

very small 
2 -value is not acceptable because of impossibility of solving the Riccati equation. The 

closed-loop eigenvalues ( i ) given in tables 1-3 for each of helicopter models verify the fact that the 

systems became stable.  The solution algorithm is enough quickly implemented in MATLAB. 
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a) 

                       
b) 

                    
c) 

Figure 1.  Poles location for the helicopter systems: a) SA330-Puma b) ZD559-Lynx c) S123-

Bo105 without the regulator if 0V   (on the left) and 40V   (on the right) 
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a) 

     
b) 

    
c) 

Figure 2. Graphs of evolution of phase coordinates for a) SA330-Puma b) ZD559-Lynx c) S123-

Bo105 if 0V   

Table 1. The closed-loop eigenvalues for SA330-Puma 

iV  0 (kts) 20 (kts) 40 (kts) 60 (kts) 80 (kts) 100 (kts) 120 (kts) 140 (kts) 

 

 

 

 

i  

 

-1,20787 -1,15176 -1,13578 -1,06783 -1,0432 -1,03161 -1,02533 -1,02133 

-1,20787 -1,15176 -1,13745 -1,15431 -1,22637 -1,42084 -1,86443 -1,34891 

-2,12702 -1,47852 -1,13745 -1,15431 -1,22637 -1,42084 -1,86443 -4,32008 

-2,12702 -5,59646 -10,7964 -11,2438 -10,481 -9,82581 -9,07914 -7,731 

-11,1628 -11,9279 -10,7964 -13,9798 -17,7763 -20,6381 -22,764 -24,4443 

-11,9261 -11,9279 -14,1489 -17,4252 -20,6256 -24,0752 -27,9953 -33,0807 

-31,0569 -34,5725 -35,0073 -35,3097 -35,6274 -35,9804 -36,2652 -35,6286 

-120,933 -116,769 -125,582 -142,776 -159,393 -175,524 -191,877 -208,899 
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Table 2. The closed-loop eigenvalues for ZD559-Lynx 

   iV  0 (kts) 20 (kts) 40 (kts) 60 (kts) 80 (kts) 100 (kts) 120 (kts) 140 (kts) 

 

 

 

 

 

i  

-0.11889 -0.33728 -0.27424 -0.1652 -0,0721 -0,04907 -0,03786 -0,02224 

-0.65317 -2.34263 -1.92651 -1.78388 -1,92051 -2,03603 -2,27176 -2,77745 

-8.09829 -8.88193 -11.2115 -14.2157 -17,1709 -19,9274 -22,5653 -25,1583 

-11.0215 -8.88193 -11.2115 -14.2157 -17,1709 -19,9274 -22,5653 -25,1583 

-30.268 -24.544 -26.1545 -31.3221 -45,1835 -56,9563 -68,8041 -84,5709 

-30.268 -24.544 -26.1545 -31.3221 -45,1835 -56,9563 -68,8041 -84,5709 

-292.341 -460.351 -471.048 -563.535 -775,599 -888,523 -1007,12 -1170,21 

-1848.68 -832.02 -862.584 -931.541 -1185,1 -1272,59 -1348,46 -1464,44 

 

Table 3. The closed-loop eigenvalues for S123-Bo105 

iV  0 (kts) 20 (kts) 40 (kts) 60 (kts) 80 (kts) 100 (kts) 120 (kts) 140 (kts) 

 
 
 

 

i  

-0,65317 -2,34263 -1,92651 -1,78388 -1,92051 -2,03603 -2,27176 -2,77745 

-8,09829 -8,88193 -11,2115 -14,2157 -17,1709 -19,9274 -22,5653 -25,1583 

-11,0215 -8,88193 -11,2115 -14,2157 -17,1709 -19,9274 -22,5653 -25,1583 

-30,268 -24,544 -26,1545 -31,3221 -45,1835 -56,9563 -68,8041 -84,5709 

-30,268 -24,544 -26,1545 -31,3221 -45,1835 -56,9563 -68,8041 -84,5709 

-292,341 -460,351 -471,048 -563,535 -775,599 -888,523 -1007,12 -1170,21 

-1848,68 -832,02 -862,584 -931,541 -1185,1 -1272,59 -1348,46 -1464,44 

  

In Figure 3 the graphs of evolution of phase coordinates for the case when the velocity changes 

linearly are given. To perform interpolation with use of the finite functions the value of the parameter 

p  is 2. As is seen the results illustrate the effectiveness of the proposed solution algorithm. The 

system becomes stable. However it’s worthwhile to say that the time which the system takes for 

damping processes increases (see Figure 2 b). 

 
Figure 3. Graphs of evolution of phase coordinates for ZD559-Lynx if V changes like a linear 

function 

5. Conclusion 

In this paper, the H-infinity approach with combination of the interpolation principle is proposed to 

design the state feedback control of helicopter motion described by the aggregated model with 

uncertainties. The interpolation technique that consists in the use of the expansion of system matrices 

in the basis of finite functions permits to obtain the solution for modes of helicopters motion where the 

forward speed changes according to different types of functional correspondences. The described 

strategy is examined on the example of three helicopter models: ZD559-Lynx, S123-Bo105, SA330-



AMMAI'2020

IOP Conf. Series: Materials Science and Engineering 927 (2020) 012059

IOP Publishing

doi:10.1088/1757-899X/927/1/012059

8

 
 
 
 
 
 

Puma. The presented numerical results verify satisfaction of requirements for system transition 

processes. 
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